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RSA is the most widely deployed public-key cryptosystem for key 
establishment and digital signatures. Its appeal comes from an unusually 
clean mathematical structure: modular exponentiation in the ring Z_N 
combined with Euler’s theorem (or, more precisely, the Chinese 
Remainder Theorem over prime factors of N). This paper reviews the 
number-theoretic foundations that make RSA correct, then connects 
those foundations to computational realities: the asymptotic and 
practical costs of key generation and exponentiation, the security 
reductions and pitfalls introduced by padding and protocol composition, 
and the algorithmic landscape of integer factorization that governs 
recommended key sizes. We emphasize the gap between the 
mathematical idealization (a trapdoor permutation) and real 
implementations that must confront randomness failures, side channels, 
and evolving computational capabilities including quantum algorithms. 
The goal is to provide a unified view of RSA as both a mathematical 
object and an engineered system. 
Keywords: RSA, Modular Arithmetic, Euler’s Theorem, Chinese 
Remainder Theorem, Integer Factorization, OAEP, Computational 
Complexity, Side-Channel Security. 

 
1. Introduction 
Public-key cryptography resolves a key-distribution bottleneck that is intrinsic to symmetric encryption: two 
parties who have never met must somehow share a secret key before they can communicate privately. The 
conceptual breakthrough of public-key cryptography is that secrecy can be achieved even when an encryption 
key is public, provided that a corresponding decryption key remains private and computationally infeasible to 
derive. Diffie and Hellman articulated this paradigm in 1976 and identified digital signatures as a parallel 
application of the same idea [1]. RSA, introduced shortly thereafter, was the first practical public-key 
cryptosystem to see broad deployment and remains a cornerstone of modern security protocols [2]. At a high 
level, RSA defines a function f(x) = x^e mod N over integers modulo a composite N = pq. The public key is (N, 
e), while the private key is an exponent d that (approximately) inverts f. Correctness depends on classic 
number theory: if ed ≡ 1 (mod φ(N)), then (x^e)^d ≡ x (mod N) for all x in the appropriate message space. 
Security is intended to follow from the difficulty of inverting modular exponentiation without the trapdoor 
information (the factorization of N), which is closely related to the integer factorization problem. 
 
However, RSA as deployed is not a single algorithm but a family of primitives wrapped into protocols. The 
computational implications of RSA therefore span multiple layers: (i) number-theoretic assumptions about 
factoring; (ii) algorithmic choices for fast exponentiation and key generation; (iii) padding and encoding 
schemes required to achieve semantic security and robust signatures; and (iv) implementation hazards such 
as timing leakage and fault attacks. This paper surveys each layer and highlights how mathematical structure 
shapes performance and risk. 
 
2. Number-Theoretic Preliminaries 
RSA operates in the multiplicative structure of the residue class ring Z_N = {0, 1, …, N−1} with arithmetic 
modulo N. For an integer N ≥ 2, define the set of units Z_N* = {x ∈ Z_N : gcd(x, N) = 1}. This set forms a finite 
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abelian group under multiplication modulo N, with order φ(N), Euler’s totient function. When N is a product 
of two distinct odd primes p and q, φ(N) = (p−1)(q−1). 
 
Euler’s theorem states that for any x ∈ Z_N*, x^{φ(N)} ≡ 1 (mod N). A direct corollary is that if integers e and 
d satisfy ed ≡ 1 (mod φ(N)), then for all x ∈ Z_N*, x^{ed} ≡ x (mod N). This provides the core correctness 
identity for RSA on invertible residues. 
 
The Chinese Remainder Theorem (CRT) strengthens this picture by decomposing arithmetic modulo N into 
arithmetic modulo its prime factors. For N = pq with gcd(p, q) = 1, CRT gives an isomorphism Z_N ≅ Z_p × Z_q. 
Computationally, CRT enables faster private-key operations: one can compute x^d mod p and x^d mod q and 
then recombine the results to obtain x^d mod N. Because exponentiation modulo a k-bit modulus is 
substantially slower than exponentiation modulo a k/2-bit modulus, CRT typically yields a 3–4× speedup in 
practice. 
 
Finally, the extended Euclidean algorithm provides the constructive bridge between the public and private 
exponents. Given e and φ(N) with gcd(e, φ(N)) = 1, it computes d = e^{-1} mod φ(N). This algorithm runs in 
time polynomial in log N and is negligible compared with prime generation. 
 
3. The RSA Construction and Correctness 
RSA key generation proceeds as follows: (1) sample two large random primes p and q; (2) compute N = pq; (3) 
compute φ(N) = (p−1)(q−1) or, more commonly, λ(N) = lcm(p−1, q−1); (4) choose a public exponent e with 
gcd(e, λ(N)) = 1; and (5) compute d = e^{-1} mod λ(N). The public key is (N, e) and the private key is d (often 
stored with p, q, and CRT coefficients). 
 
Encryption of a message representative m ∈ Z_N is c = m^e mod N. Decryption is m = c^d mod N. For signatures, 
the roles are reversed: a signer computes s = m^d mod N and a verifier checks m ≡ s^e (mod N). In practice, 
m is not a raw message but an encoded value produced by a padding scheme (Section 5). 
 
Correctness can be shown in two steps. First, if m ∈ Z_N* then Euler’s theorem implies m^{λ(N)} ≡ 1 (mod N). 
Since ed = 1 + k·λ(N) for some integer k, we have m^{ed} = m·(m^{λ(N)})^k ≡ m (mod N). Second, if m is not 
in Z_N* (i.e., shares a factor with N), Euler’s theorem does not apply directly. Nonetheless, the RSA decryption 
identity still holds for all m ∈ Z_N when d is defined modulo λ(N) and the computation is interpreted via CRT: 
modulo p and q, Fermat’s little theorem ensures the exponentiation reduces appropriately, and the 
congruences recombine uniquely modulo N. This is why many standards recommend using λ(N) rather than 
φ(N) when defining d. 
 
Mathematically, RSA induces a permutation on Z_N* (and a bijection on suitably restricted message 
representatives) as long as e is coprime to λ(N). The trapdoor is the ability to compute d, which is easy if one 
knows p and q but is believed hard otherwise. 
 
4. Security Assumptions and the Role of Factoring 
RSA’s security is often summarized as: ‘breaking RSA is as hard as factoring N.’ The relationship is subtler. 
Knowing the factorization of N immediately yields φ(N) (or λ(N)) and therefore d, so factoring implies the 
ability to invert RSA. The converse-whether inverting RSA implies factoring-is not known in full generality. 
There are reductions in restricted settings, but in general RSA inversion is assumed hard as an independent 
problem (the RSA problem). Boneh surveys two decades of attacks and emphasizes that many practical breaks 
exploit misuse rather than the underlying mathematics [3]. Still, the best-known general attacks against 
properly generated RSA keys reduce to factoring N. The dominant classical algorithm for large, random 
semiprimes is the Number Field Sieve (NFS), whose heuristic runtime is sub-exponential in log N and 
asymptotically faster than earlier methods [4]. This sub-exponential complexity is why key sizes must grow 
over time as computational power improves.  
 
Security also depends on parameter choices. A small public exponent e (commonly 65537) improves 
performance, but if paired with deterministic or structured message representatives it can enable ‘low-
exponent’ attacks. Ha stad’s broadcast attack shows that if the same plaintext is sent to multiple recipients with 
the same small e and insufficient randomization, the message can be recovered using the Chinese Remainder 
Theorem and integer root extraction [5]. More generally, Coppersmith’s lattice methods can recover small 
roots of modular polynomials and underpin attacks when parts of the plaintext or structure are known [6]. 
Finally, RSA is threatened by quantum computation. Shor’s algorithm can factor integers in time polynomial in 
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the bit-length of N, which would render RSA insecure against sufficiently large fault-tolerant quantum 
computers [7]. As of early 2026, such machines do not exist at the required scale, but the algorithm shifts RSA’s 
long-term viability and motivates migration plans to post-quantum cryptography. 
 
5. Padding, Encodings, and Provable Security 
Raw RSA (textbook RSA) is deterministic: encrypting the same message representative twice yields the same 
ciphertext. Determinism violates modern notions of confidentiality such as indistinguishability under chosen-
plaintext attack (IND-CPA). Moreover, textbook RSA is malleable: given c = m^e mod N, an attacker can form c' 
= (c·r^e) mod N, which decrypts to m·r mod N. Therefore, secure RSA encryption requires randomized padding. 
 
The most widely standardized approach is RSAES-OAEP (Optimal Asymmetric Encryption Padding), 
introduced by Bellare and Rogaway and later standardized in PKCS #1 [8]. OAEP wraps the message with 
randomness via hash-based masking, turning a trapdoor permutation into an encryption scheme with strong 
security guarantees in the random oracle model. In practice, OAEP is used in ‘hybrid encryption’: RSA-OAEP 
encrypts a random symmetric key, and a symmetric cipher encrypts the bulk data. 
 
For signatures, a parallel issue arises: textbook RSA signatures are vulnerable to existential forgery because 
RSA is multiplicative. Modern standards therefore hash the message and apply an encoding before 
exponentiation. PKCS #1 v1.5 and RSASSA-PSS are common schemes standardized in RFC 8017 [9]. PSS is 
designed to admit tighter security arguments (again in the random oracle model) and incorporates per-
signature salt. 
 
History shows why these layers matter. Bleichenbacher’s 1998 adaptive chosen-ciphertext attack exploited 
PKCS #1 v1.5 encryption padding validation to create an oracle, leading to practical decryption of RSA 
ciphertexts under certain protocols such as SSL [10]. The lesson is that security depends not only on 
mathematics but also on how errors are handled and how protocol responses leak information. Contemporary 
guidance therefore emphasizes constant-time implementations, strict conformance to standards, and 
preference for schemes with strong security proofs (e.g., OAEP, PSS). 
 
6. Computational Implications: Cost Models and Optimizations 
RSA’s computational cost is dominated by modular exponentiation. Using square-and-multiply, exponentiation 
to an exponent of t bits requires O(t) modular multiplications. For a k-bit modulus N, naive multiplication is 
O(k^2), while asymptotically faster methods exist; in practice, high-performance libraries use variants of 
Karatsuba, Toom-Cook, and FFT-based multiplication depending on size. The practical takeaway is that RSA 
encryption and signature verification (public-key operations) are relatively fast because the public exponent e 
is chosen small (commonly 65537). Decryption and signing (private-key operations) are slower because d is 
large and roughly k bits. 
 
CRT optimization reduces private-key exponentiation cost. By computing modulo p and q separately, the 
multiplications involve k/2-bit numbers, reducing the overall work by about a factor of 4, plus overhead for 
recombination. Most implementations store dp = d mod (p−1), dq = d mod (q−1), and q^{-1} mod p to perform 
this recombination efficiently. 
 
Key generation is also computationally significant, especially for constrained devices. It requires sampling 
candidate odd integers of the target bit-length and testing primality. Modern implementations use 
probabilistic primality tests (e.g., Miller–Rabin) and may incorporate additional checks for strong primes or 
constraints on p−1 and q−1 depending on policy. The expected time is dominated by the density of primes near 
2^{k/2}, approximately 1/ln(2^{k/2}) = 2/(k ln 2). Thus, on average, O(k) random odd candidates are tested 
to find each prime. 
 
These costs motivate design tradeoffs. Small e improves verification speed but can interact dangerously with 
poor padding. Large e mitigates certain low-exponent attacks but slows verification. Similarly, using a larger 
modulus improves security but increases latency, bandwidth (for certificates and signatures), and server load. 
Standards attempt to balance these concerns by recommending minimum key sizes and approved padding 
schemes; for example, NIST SP 800-56B Rev. 2 provides guidance for RSA-based key establishment, including 
security strength categories tied to modulus size [11].  
 
Computational implications extend beyond raw time. Side-channel resistance can increase cost because 
constant-time exponentiation avoids data-dependent branches and memory access patterns. Blinding-
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multiplying inputs by a random r^e before private-key exponentiation and then unblinding the result-adds 
extra exponentiations but is often necessary to mitigate timing and power analysis attacks. Thus, the 
mathematically ‘same’ RSA operation can have very different real-world cost depending on the threat model. 
 
7. Broader Implications: Deployment, Key Sizes, and the Future 
RSA’s mathematical simplicity helped it become a de facto standard, but simplicity does not imply uniform 
safety. Large-scale incidents frequently stem from implementation mistakes: reuse of primes across devices, 
inadequate randomness, or protocol oracles. A recurring theme is that RSA inherits fragility from its reliance 
on prime generation. If p or q is biased or partially predictable, the effective security can collapse. 
 
Key sizes are driven by the state of factoring algorithms and available computational resources. Sub-
exponential algorithms like NFS imply that security does not scale linearly with key length. As a rule of thumb, 
doubling the bit-length of N yields more than a doubling of security, but the exact mapping depends on 
modeling assumptions and empirical records of factorization efforts. Operational guidance therefore tends to 
be conservative and periodically updated (e.g., by NIST and other standards bodies) [11]. 
 
RSA also competes with elliptic-curve cryptography (ECC), which typically offers comparable security with 
smaller keys and faster operations. Yet RSA remains entrenched because of its broad support in legacy systems, 
certificate infrastructures, and hardware security modules. In the near term, RSA is likely to persist in 
signatures (especially where verification speed matters), even as key exchange migrates toward elliptic-curve 
and post-quantum mechanisms. 
 
In the longer term, Shor’s algorithm establishes a clear endgame: if scalable quantum computers become 
practical, RSA must be replaced. This prospect has already reshaped cryptographic engineering, shifting 
attention toward hybrid protocols and crypto-agility, and toward post-quantum candidates whose security 
rests on different mathematical problems. In this sense, RSA’s enduring value is not only as a deployed 
primitive but also as a canonical example of how deep mathematics and computational constraints co-
determine what ‘secure’ means in practice. 
 
8. Conclusion 
RSA’s core idea-using modular exponentiation with a trapdoor derived from the factorization of N-remains one 
of the most elegant constructions in applied mathematics. Its correctness is a direct consequence of Euler’s 
theorem and CRT, and its efficiency is shaped by fast arithmetic and careful parameter selection. At the same 
time, RSA’s real-world security depends critically on layers that are not present in the textbook definition: 
randomized padding, strict protocol behavior, side-channel countermeasures, and continuous alignment with 
the evolving cost of factoring. The computational implications are therefore twofold. RSA is computationally 
practical because it enables fast public-key operations and admits optimizations like CRT; but it is also 
computationally constrained because private-key operations are heavy and because key sizes must grow to 
stay ahead of classical factoring algorithms. Looking forward, quantum algorithms place a fundamental bound 
on RSA’s long-term security. Understanding RSA as both a mathematical object and a computational artifact is 
essential for using it responsibly today and for transitioning away from it when necessary. 
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