
Volume-2, Issue-7, November-2018: 79-87

International Journal of Recent Innovations in Academic Research ISSN: 2635-3040

www.ijriar.com 79

E-Checker: A Secure Assessment and Interactive

Feedback Generation System of Object Oriented-Based

Programming Exercises with a Reliable Connascence

Recognition and Encapsulation Tool

1
Bucad, Maria Graciela Ramos and

2
De Castro, Erwin F.

Batangas State University JPLPC-Malvar, Malvar, Batangas, Philippines

Instructor, College of Engineering and Computing Sciences
1
E-mail: mgracerbucad@gmail.com;

2
E-mail: decastroerwinf@gmail.com

Abstract: Programming is an essential portion of every technology course. For almost every

technology student, they may say that programming is not an easy subject to learn; and that

also goes for the instructors–teaching programming subjects has never been an easy task.

Consider the usual scenario in one programming class inside a computer laboratory: a 1:45

teacher-student ratio in a 3-hour period held once a week, around 2-3 machine problems to be

solved in a span of 2 hours by students using a programming language and finally, 1 hour left

for the instructor to check and assess students' output. Barely, less than 2 minutes is allotted

for the instructor to check, assess and record one student's work. The said scenario depicts

one situation that lessens the efficiency of learning and teaching a programming language.

Students hardly hear and get immediate feedback from instructors as to what areas needs to

be improved. As for the students, feedback might be very important because it improves their

learning experience and could help them become more motivated. The proponents consider

the importance of having an automatic assessment tool that will help students improve their

programming experience. A tool that can help lessen the effort of tedious analysis and

grading huge amounts of similar student program solutions to teacher-provided machine

problems; a tool that will incorporate software metrics and criteria like functionality, design,

and style in program assessments; a computerized tool that will objectively grade and give

immediate feedback to students developed programs.

Keywords: Automatic Feedback, Programming, Program Checker, Automatic Assessment

Tool, Software Metrics.

Citation: Bucad, Maria Graciela Ramos and De Castro, Erwin F. 2018. E-Checker: A Secure

Assessment and Interactive Feedback Generation System of Object Oriented-Based

Programming Exercises with a Reliable Connascence Recognition and Encapsulation Tool.

International Journal of Recent Innovations in Academic Research, 2(7): 79-87.

Copyright: Bucad, Maria Graciela Ramos and De Castro, Erwin F., Copyright©2018. This

is an open-access article distributed under the terms of the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

Introduction

Grading programming assignments and projects are similar to grading traditional assignments

such as written essays. The primary distinctions between them are the unique keywords or

constructs across different programming languages and the diverse possible solutions

associated with a particular problem-solving technique. Traditional assessment for computer

programming assignments and projects usually depends on an answer scheme that includes

Volume-2, Issue-7, November-2018: 79-87

International Journal of Recent Innovations in Academic Research ISSN: 2635-3040

www.ijriar.com 80

the source code as a model answer with marks allocated to specific lines of code. This model

answer is then used by the instructors to allocate marks to the students’ programs based on

the provided source code in the answer scheme. There are a lot of factors that contribute to

learning (for students) and teaching (for instructors) programming subjects efficiently. A

working computer unit, technology usage, well-trained instructors, focus and determined

attitude for both students and instructors, good instructor-teacher relationship, well-defined

feedback channel, to name a few. Many tools and approaches have also been devised to

improve teaching and learning programming.

Consider the usual scenario in one programming class inside a computer laboratory: a 1:45

teacher-student ratio in a 3-hour period held once a week, around 2-3 machine problems to be

solved in a span of 2 hours by students using a programming language and finally, 1 hour left

for the instructor to check and assess students' output. Barely, less than 2 minutes is allotted

for the instructor (in one laboratory session) to check, assess and record one student's work.

The said scenario depicts one situation that lessens the efficiency of learning and teaching a

programming language. Students hardly hear and get immediate feedback from instructors as

to what areas needs to be improved. As for the students, feedback might be very important

because it may improve their learning experience and could help them become more

motivated.

As for the above scenario, the proponents consider the importance of having an automatic

assessment tool in teaching programming subjects and consequently, will help students

improve their programming experience. The proponents intend to develop a tool that can help

lessen the effort of tedious analysis and grading huge amounts of similar student program

solutions to teacher-provided machine problem; a tool that will incorporate software metrics

and criteria like functionality, design, and style in program assessments; a tool that will

objectively grade and give immediate feedback to students developed programs.

Review of Literature
Automatic grading of programs has existed in various fields for many years ago. A proposed

method for evaluating C programs was developed by Arifi et al., (2016). In the project, two

approaches are distinguished such as: static and dynamic analysis methods. The proposed

method is based on static analysis of programs where the evaluated program is compared

with the evaluator-provided program through a Control Flow Graphs. Unlike the dynamic

analysis that requires an executable program to be evaluated, static analysis can evaluate a

program even if it is not totally correct. A great challenge is to deal with multiple of solutions

that exists for the same machine / programming problem.

As a solution to this, the authors proposed an innovative similarity measure that compares

two programs according to their semantic executions (Arifi et al., 2016). Xu and Zhang

(2006) developed a prototype tool known as SimC. This tool automatically generates test data

for unit testing of programs developed in C. and symbolically simulates the execution of the

given program. The pointer operations are also simulated precisely making it capable of

generating test data for programs involving pointer and structure operations (Xu and Zhang,

2006).Similarly, an open-source computer program called Spotter allows students to check

their answers to symbolic homework problems was conceptualized and developed by Crowell

(2006). The software can be used, copied, and modified freely, and full documentation is

available online. The instructor installs the program and an answer file on a server, and

students check their answers through a web browser. Common incorrect answers can be

added to the answer file, along with an appropriate hint for the student (Crowell, 2003). A

Volume-2, Issue-7, November-2018: 79-87

International Journal of Recent Innovations in Academic Research ISSN: 2635-3040

www.ijriar.com 81

generic assessment rubric for computer programming courses was devised by Mustapha et

al., (2016) to basically come up with a standardized grading system for different logics and

constructs (but same output) given by students as answer/solution to programming problems.

In the authors’ scenario, it is not always the instructors who check and give marks to

students; there is an involvement of either laboratory assistants or demonstrators.

This scenario led to grading inconsistencies in terms of the marks awarded when the same

solution is being graded by different persons, hence, the generic assessment rubric was

conceptualized. To further address this issue, a set of assessment rubric is necessary in order

to provide flexibility for critical and creative solutions among students as well as to improve

grading consistencies among instructors and teaching assistants or demonstrators. A rubric

for each domain in computer programming courses such as: cognitive, psychomotor, and

affective was incorporated to the developed rubric. (Mustapha et al., 2016)

Objectives of the Study

This project aims to:

1. Devise a special tool that performs static code analysis of students’ object-oriented-

based exercises;

2. Perform automatic assessment and grading of dynamic object-oriented-based

exercises;

3. Employ a flexible computerized object-oriented software metrics in assessing object-

 oriented-based (VB.Net, C++, Java) exercises;

4. Return immediate results and feedback to students and instructors;

5. Provide a progress-monitoring facility to students and instructors

Materials and Methods

Provided in figure 1 is the framework of the project, key features are presented to show (1)

how laboratory assignments are submitted and gathered (repository), (2) running student

programs and scoring the results vis-à-vis written instructor’s solutions and (3) providing

feedbacks and grading reports.The grading requirements include homegrown grading rubric.

The back-end of the project’s framework is a set of shell scripts that automate the batch

grading of the students’ submitted programming assignments. A web interface was provided

to allow instructors and students send, view, mark, receive feedback on a real-time basis.

Combination of script-based and web-based technologies were utilized to make the project

functional.

Figure 1. Framework of the project

Volume-2, Issue-7, November-2018: 79-87

International Journal of Recent Innovations in Academic Research ISSN: 2635-3040

www.ijriar.com 82

Results and Discussion

Human grading of programming assignments is a tedious and error-prone task, a problem

compounded by the large enrolments of many programming courses. The nature of

programming assignments makes it perhaps the most difficult type of assignment to grade. As

a result, students in such courses tend to be given fewer programming assignments and lesser

feedbacks than should be ideally given. One solution to this problem is to automate the

grading process such that students can electronically submit their programming assignments

and receive instant feedback. Three main components were looked at in grading

programming tasks/assignments: correctness, efficiency and maintainability. Manual grading

can lead to great difficulty in judging the correctness of and efficiency of computer programs.

Providing a web-based interface for both instructors and students is a great tool to support

improved programming experience, improved grading consistencies by incorporating a

generalized programming rubric to be used across all object-oriented programming

languages.

It is obvious that great potential benefit can be reaped if the grading of programming

assignments can be automated or at least computerized. There have been several studies into

the feasibility of using computer networks and other technologies in programming courses.

However, considering the potential benefits of automated grading, few academic institutions

have implemented such a system because of the several issues that need to be addressed

before such a system can be used. These include, but not limited to the danger of malicious

programs, plagiarism, various psychological aspects of automated grading and technology-

related requirements. As an action to such, students and instructors were provided with

individual accounts to ensure security. A server was allotted to become repository of all

submitted programming assignments, solutions made by instructors and marks automatically

graded by the software.

Looking at the instructors’ scenario, many tasks, such as grading and providing customized

feedback on programming assignments, require instructors to go through and understand

students’ code. The workload of these tasks is prohibitively huge. However, skipping or

delaying such tasks prevents instructors from keeping track of students’ performance. On

students’ part, it is difficult for them to get prompt, customized feedback and help from the

instructors. Although students may seek help from peers, peers are often not capable of

helping or providing valuable feedback in many cases. Instructors or peers cannot always sit

with students while the students are coding or provide prompt hints when the students

encounter problem. Automation Tools such as the developed project is indeed needed to

maintain the quality of education and provide solutions to mentioned pitfalls. The capability

of quantifying behavioral similarity between programs is helpful for both teaching and

learning programming.

Instructors’ and Students’ Portal

The project includes portals or modules for both instructors and students. In the instructors’

module: facility for posting exercises, repository of submitted programming assignments and

exercises and grading or marking options were added. For the students’ module, they will

have an interface: for viewing instructors’ posted exercises/ programming assignments,

uploading their accomplished files and a progress monitoring facility for feedbacks and

marks given by instructors. When a student has completed an assignment/exercise, he or she

will hit the submit program; this will take a copy of the student’s source code and save it

somewhere accessible only to the instructor. It also allows students to resubmit all or part of

their assignment, at least up to the due date and perhaps thereafter, keeping track of the new

Volume-2, Issue-7, November-2018: 79-87

International Journal of Recent Innovations in Academic Research ISSN: 2635-3040

www.ijriar.com 83

submission time. The system also keeps a log of each transaction, to support or refute student

claims of system failure or unavailability (due, most often, to file systems filling up just

before the due date). Figures 2 and 3 present the modules discussed.

Figure 2. Coding Area for Students

Figure 3. Repository Portal for Instructors

Volume-2, Issue-7, November-2018: 79-87

International Journal of Recent Innovations in Academic Research ISSN: 2635-3040

www.ijriar.com 84

Automatic Assessment and Grading Module

For the criteria in grading computer programs (as gathered during the data gathering phase),

the proponents incorporated the rubric in the Assessment Module. Such tool recognizes

students misinterpreted instructions, missed deadlines, errors, both due to misconceptions on

their part and inevitable ambiguities in the problem specification. When the student submits a

program, the system compiles it and even run it against published cases from instructors. This

alerts the student to any gross failures (such as having added a last-minute comment without

an ending delimiter) and any unexpected discrepancies with the automated running process.

Criteria and corresponding details are provided in the table 1. Area where instructors can

configure the rubric for grading students’ works is provided in figure 4.

Table 1. Computer Programming Grading Rubric

Criteria

Assessment

Exceptional

(4 points)

Acceptable

(3 points)

Amateur

(2 points)

Unsatisfactory

(1 point)

Correct

Output

(30%)

The program

works and

meets all of the

specifications

The program

works and

produces the

correct results

and displays

them correctly. It

also meets most

of the other

specifications.

The program

produces correct

results but do not

display them

correctly.

The program

is producing

incorrect

results.

Readability

(10%)

The code is

exceptionally

well organized

and very easy

to follow.

The code is

fairly easy to

read.

The code is

readable only by

someone who

knows what it is

supposed to be

doing.

The code is

poorly

organized and

very difficult

to read.

Application

(30%)

Student shows

a high-level

ability to use

the most

efficient and

logical

programming

techniques and

processes in

creating the

program.

Student shows

considerable

ability to use the

most efficient

and logical

programming

techniques and

processes in

creating the

program.

Student shows

some ability to

use the most

efficient and

logical

programming

techniques and

processes in

creating the

program.

Student shows

a limited

ability to use

the most

efficient and

logical

programming

techniques

and processes

in creating the

program.

Program

Execution

(30%)

Program

executes

correctly with

no syntax or

runtime errors.

Program

executes

correctly with

little or tolerable

syntax or

runtime errors.

Program

executes

correctly with

many syntax or

runtime errors.

Program does

not execute at

all.

Volume-2, Issue-7, November-2018: 79-87

International Journal of Recent Innovations in Academic Research ISSN: 2635-3040

www.ijriar.com 85

Figure 4. Module for Grading Criteria Configuration

Instructor’s Dashboard

A dashboard for instructors was also included in the project. This area enables instructors to

organize content (exercises, assignments) and help control the flow of the course, view and

print reports for entire classes, giving an overview of the class's strengths and weaknesses,

view the standards used by default for a course, with the option of editing standards

pertaining to that class only. Figures 5, 6 and 7 present the different modules included in the

Instructor’s Dashboard.

Figure 5. Notifications and Statistics (Instructor’s Dashboard)

Volume-2, Issue-7, November-2018: 79-87

International Journal of Recent Innovations in Academic Research ISSN: 2635-3040

www.ijriar.com 86

Figure 6. Manage Section Module (Instructor’s Dashboard)

Figure 7. Student Submission Module (Instructor’s Dashboard)

Conclusions

Based on the findings of the study, the proponents have drawn the conclusions about the

developed system:

1. The proponents found out that static analysis method is more appropriate to use than

dynamic analysis method because dynamic analysis requires the executable program to be

evaluated while static analysis can evaluate the program even if it is not finished.

2. By comparing the students’ output program to the instructor-provided program, the

application successfully performed an automatic assessment and grading of the Object-

oriented-based programming exercises.

Volume-2, Issue-7, November-2018: 79-87

International Journal of Recent Innovations in Academic Research ISSN: 2635-3040

www.ijriar.com 87

3. Using the Connascence Flexible Software Metrics, the application was able to assess

Object-Oriented based exercises.

4. The application was able to send immediate feedback and results to the student’s portal

since it uses static code analysis.

5. Students and faculty where able to track and monitor their progress in the course and

activity using the interface provided for the users.

References

1. Arifi, S.M., Zahi, A. and Benabbou, R. 2016. Semantic similarity based evaluation for C

programs through the use of symbolic execution. In Global Engineering Education

Conference (EDUCON), 2016 IEEE (pp. 826-833). IEEE.

2. Crowell, B. 2003. Checking Students' Symbolic Math on a Computer. The Physics

Teacher, 41(8): 478-480.

3. Xu, Z. and Zhang, J. 2006. A test data generation tool for unit testing of C programs. In:

Quality Software, 2006. QSIC 2006. Sixth International Conference on IEEE, 107-116

pp.

